تقریب زیر دیفرانسیل خانواده توابع محدب تعمیم یافته

thesis
abstract

در این پژوهش به مطالعه زیر دیفرانسیل خانواده توابع محدب تعمیم یافته پرداخته سپس حالت خاص فضای باناخ را در نظر میگیریم و به عنوان نتیجه زیر دیفرانسیل توابع همگن مثبت,محدب و نیم پیوسته پایینی و خانواده ای از توابع به نام توابع تقریب-کراندار مورد بررسی قرار میگیرد.با بیان قضییه تقریب نابرابری مقدار میانگین سه نقطه ای و معرفی توابع تقریبا محدب,مشخصه های زیر دیفرانسیل کلارک انها را بیان می کنیم.

First 15 pages

Signup for downloading 15 first pages

Already have an account?login

similar resources

زیر دیفرانسیل های تعمیم یافته برای توابع شبه محدب

توابع شبه محدب کلاسی از توابع هستند که دارای قدمت بیش از پنجاه سال می باشند و بسیار بزرگتر از کلاس توابع محدب هستند. این کلاس از توابع نقش بسیار مهمی در زمینه های مختلف ریاضی و اقتصاد ایفا می کنند. در سی سال اخیر چندین مفهوم از زیردیفرانسیل برای توابع شبه محدب مطرح شده است. قدیمیترین آنها زیر دیفرانسیل گرینبرگ- پی یرسکالا و زیر دیفرانسیل مماسی می باشد. این زیر دیرانسیل ها به اندازه کافی بزرگ هس...

15 صفحه اول

برنامه ریزی درجه دوم محدب تعمیم یافته برای حل دستگاه های خطی فازی

دستگاه معادلات خطی، یکی از مهمترین ابزارهای مدلسازی پدیده های دنیای واقعی است. اما از آنجاییکه پدیده های دنیای واقعی همواره با عدم قطعیت همراه هستند، لذا حل دستگاه معادلات خطی فازی از اهمیت بسزایی برخوردار می‌شود. یکی از روش های متداول و پر کاربرد برای یافتن جواب‌های دقیق و تقریبی یک دستگاه معادلات خطی فازی، استفاده از روش کمترین مربعات است. در این روش، با انتخاب یک متر دلخواه و حل یک مساله برن...

full text

تحلیل بیزی در خانواده توزیع های نمایی تعمیم یافته

در این مقاله مینیماکس بودن برآوردگر بیزی تعمیم یافته پارامتر شکل توزیع نمایی تعمیم یافته را تحت تابع زیان مربع خطای وزنی مورد بررسی قرار میدهیم. یک روش متعارف در تحلیل بیزی زمانی که اختلاف نظر در مورد توزیع پیشین وجود دارد، انتخاب یک کلاس از توزیع های پیشین و دستیابی به تصمیم بهینه در آن کلاس است که به روش بیزی استوار معروف است. در این راستا برآوردگر تأسف پسین گاما مینیماکس را برای خانواده توزی...

full text

مرزهای تعمیم یافته برای خانواده ای از توابع پیوسته

ک خانواده از توابع پیوسته روی فضای موضعاً فشرده و هاسدورف a فرض کنیم f 2 a است، هرگاه هر تابع a ی

زیرنظمی متری و زیر دیفرانسیل محدب

آراگون و جفری ویژگی های گوناگون منظمی متری زیردیفرانسیل یک تابع محدب شبه پیوسته پایین ‎(ش.پ.پ.)‎ عمل کننده بر روی یک فضای هیلبرت، برحسب جملاتی از شرط رشد مجذوری را مشخصه سازی کرده اند. همچنین موردوخوویچ و نیها مشخصه سازی منظمی قوی را به فضاهای باناخ توسیع داده اند. در این پایان نامه، توسیع مشخصه سازی های زیرمنظمی متری و قوی انجام شده را به فضاهای باناخ مطالعه می کنیم‎. به علاوه، برخی استلزام ه...

زیر کلاسی از توابع همساز در ارتباط با توابع فوق هندسی تعمیم یافته رایت

در این پایان نامه ابتدا توابع همساز تک ارز و خواص هندسی آنها و بسط سری این توابع را مطالعه می کنیم . سپس با استفاده از حاصل ضرب پیچشی و تابع فوق هندسی تعمیم یافته رایت زی کلاس جدیدی از توابع تک ارز همساز تعریف می کنیم.سعی می شود در خصوص این کلاس خواص جالبی را از جمله کران ضرایب،نتایج شمولیت و خواص هندسی دیگری را اثبات کنیم.

15 صفحه اول

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


document type: thesis

وزارت علوم، تحقیقات و فناوری - دانشگاه شیخ بهایی - دانشکده ریاضی و کامپیوتر

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023